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Abstract : For a family of uniform distribution on the interval [θ− (1/2) , θ− (1/2)], the information
inequality for the bayes risk of any estimator of θ is given under the quadratic loss and the uniform prior
distribution on an interval [−c, c]. The lower bound for the Bayes risk is shown to be sharp. And also the
lower bound for the limit inferior of Bayes risk as c→∞ is seen to be attained by the mid-range estimator.
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1. Introduction : In the paper, Vincze (1979) obtained Cramer-Rao type inequality in the
non-regular case, and for the uniform distribution on the interval [θ− (1/2) , θ− (1/2)] got the
lower bound for the variance of unbiased estimator with the right order of magnitude, but it was
not sharp. Following ideas of Vincze (1979), Khatri (1980) gave a simple general approach to the
non-regular Cramer-Rao bound. In the relation to Vincze (1979), Móri (1983) also obtained the
lower bound for the limit inferior of the expected quadratic risk of unbiased estimators of θ under
the uniform distribution on the interval [−c, c] as c →∞ and showed that it was sharp. In this
paper, for a family of uniform distributions on [θ− (1/2) , θ− (1/2)], we obtain the information
inequality for the Bayes risk of any estimator of θ under the quadratic loss and the uniform prior
distribution on an interval [−c, c] by a somewhat different way of Mori (1983). We also show that
the lower bound for the Bayes risk of any estimator of θ is sharp, and that the lower bound for
the limit inferior of Bayes risk of any estimator of θ as c→∞ is attained by the mid-range, which
involves the result for unbiased estimators of θ by Mori (1983). The related results to the above
are found in Akahira and Takeuchi (1995).

2. An information inequality for the Bayes risk of any estimator : Suppose that
X1,X2, . . . ,Xn are independent and identically distributed random variables according to the uni-
form distribution with a density p (x, θ) on the interval [θ− (1/2) , θ− (1/2)], where −∞< θ <∞.
Let n be fixed, and let θ̂ = θ̂ (X) be an estimator of θ based on the sample X =(X1,X2, . . . ,Xn).

Then we consider the Bayes risk rc

(
θ̂
)

of any estimator θ̂ of θ under the quadratic loss and the

uniform prior distribution on an interval [−c, c], where −∞< c <∞, i.e.

rc

(
θ̂
)

:=
1

2c

∫ c

−c

Eθ

[(
θ̂− θ

)2
]
dθ.

Let f (x, θ) :=
n∏

i=1

p (xi, θ) with x = (x1, x2, . . . , xn). In order to get the Bayes estimator, i.e. to

minimize rc

(
θ̂
)
, it is enough to obtain the estimator minimizing

∫ c

−c

{
θ̂ (x)− θ

}2

f (x, θ)dθ
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for almost all x. Such an estimator is easily given by

θ̂∗
c (X) =

∫ c

−c

θf (X, θ)dθ

/∫ c

−c

f (X, θ)dθ. (1)

Here, we have

f (x, θ) =

{
1
0

for x(n) − (1/2)≤ θ ≤ x(1) +(1/2)
otherwise,

(2)

where x(1) := min1≤i≤n xi and x(n) := max1≤i≤n xi. Let θ := X(n)− (1/2), θ := X(1) +(1/2). From (1)
and (2) we have

θ̂∗
c (X) =






1
2
(θ + c)

1
2

(
θ + θ

)
1
2

(
θ− c

)

0

for − c < θ, θ ≤ c≤ θ,

for − c < θ, θ < c,

for θ ≤−c≤ θ, θ < c
otherwise,

(3)

= θ̂∗
c

(
θ, θ

)
(say),

where 0/0 = 0 and c > 1/2. Then we have following.

Theorem 1. The information inequality for the Bayes risk of any estimator θ̂ of θ is given by

rc

(
θ̂
)

=
1

2c

∫ c

−c

Eθ

[(
θ̂− θ

)2
]
dθ

≥
1

2 (n+1) (n+2)
−

1

2c (n+1) (n+2) (n+3)
= A0 (c) (say), (4)

where c > 1/2, and the lower bound is sharp, that is, θ̂∗
c attains the bound.

Proof 1. The joint density function fθ,θ of
(
θ, θ

)
is given by

f (x, θ) =

{
n (n− 1) (y− z +1)

n−2

0
for y ≤ θ ≤ z, 0≤ z − y ≤ 1,
otherwise.

Then we have

r∗. =
∫ c

−c
Eθ

[{
θ̂∗

c − θ
}2

]
dθ

=
∫ ∫

y≤θ≤z, 0≤z−y≤1

∫ c

−c

{
θ̂∗

c (y, z)− θ
}2

f θ

θ,θ
(y, z)dθdydz.

Since ∫
|θ|≤c, y≤θ≤z

(
θ̂∗

c − θ
)2

f θ

θ,θ
(y, z)dθ

= θ̂∗2

c

∫
|θ|≤c, y≤θ≤z

f θ

θ,θ
(y, z)dθ− 2θ̂∗

c

∫
|θ|≤c, y≤θ≤z

θf θ

θ,θ
(y, z)dθ

+
∫
|θ|≤c, y≤θ≤z

θ2f θ

θ,θ
(y, z)dθ

= n (n− 1) (y− z +1)
n−2

(
θ̂∗2

c

∫
|θ|≤c, y≤θ≤z

dθ− 2θ̂∗
c

∫
|θ|≤c, y≤θ≤z

θdθ

+
∫
|θ|≤c, y≤θ≤z

θ2dθ
)

= n (n− 1) (y− z +1)
n−2

(
I1θ̂

∗2

c − 2I2θ̂
∗
c + I3

)

= Gn (y, z) (say),

where
I1 := min{c, z}−max{−c, y} ,

I2 := 1
2

[
(min{c, z})

2
− (max{−c, y})

2
]
,

I3 := 1
3

[
(min{c, z})

3
− (max{−c, y})

3
]
.
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Next we obtain

r∗ =
(∫ 1−c

−c

∫ −c

z−1
+

∫ 1−c

−c

∫ z

−c
+

∫ c

1−c

∫ z

z−1
+

∫ 1+c

c

∫ −c

z−1

)
Gn (y, z)dydz

=
(∫ ∫

J1

+
∫ ∫

J2

+
∫ ∫

J3

+
∫ ∫

J4

)
Gn (y, z)dydz (say).

(5)

Repeating integration by parts we have

J1 =

∫ 1−c

−c

∫ −c

z−1

n (n− 1) (y− z +1)
n−2

{
1

4
(z − c)

2
(z + c)−

1

2
(z − c)

(
z2 − c2

)
+

1

3

(
z3 + c3

)}
dydz

=
1

2(n+1) (n+2) (n+3)
, (6)

J2 =

∫ 1−c

−c

∫ z

−c

n (n− 1) (y− z +1)
n−2

{
1

4
(y + z)

2
(z − y)−

1

2
(y + z)

(
z2 − c2

)
+

1

3

(
z3 + c3

)}
dydz

=
1

2(n+1) (n+2)
−

1

(n+1) (n+2) (n+3)
, (7)

J3 =

∫ c

1−c

∫ z

z−1

n (n− 1) (y− z +1)
n−2

{
1

4
(y + z)

2
(z − y)−

1

2
(y + z)

(
z2 − y2

)
+

1

3

(
z3 + c3

)}
dydz

=
1

2(n+1) (n+2)
, (8)

J4 =

∫ 1+c

c

∫ c

z−1

n (n− 1) (y− z +1)
n−2

{
1

4
(c+ y)

2
(c− y)−

1

2
(c+ y)

(
c2 − y2

)
+

1

3

(
c3 − y3

)}
dydz

=
1

2(n+1) (n+2) (n+3)
. (9)

From (5) to (9) we have

r∗ =
c

(n+1) (n+2)
−

1

(n+1) (n+2) (n+3)
. (10)

Since θ̂∗
c minimize the Bayes risk rc

(
θ̂
)
, it follows from (10) that for any estimator θ̂ of θ

rc

(
θ̂
)

=
1

2c

∫ c

−c

Eθ

[(
θ̂− θ

)2
]
dθ

≥
1

2c
r∗ =

1

2(n+1) (n+2)
−

1

2c (n+1) (n+2) (n+3)
.

Thus we complete the proof.

Corollary 1. For any estimator θ̂ of θ

limc→∞rc

(
θ̂
)
≥

1

2 (n+1) (n+2)
(11)

The proof of Corollary is straightforward from the Theorem. The lower bound () is easily seen to
be attained by mid-range θ̂0 :=

(
X(1) +X(2)

)
/2.

Remark 1. The inequality of the Corollary is same as one for any unbiased estimator given
by Móri (1983).
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3. Comparison of the lower bounds : In this section we compare the lower bound A0 (c)
with Móri’s one. Let

Ic :=−A0 (c)+
c2

3
. (12)

In the proof of the Theorem in the paper, Móri (1983) showed that for any unbiased estimator θ̂
of θ

rc

(
θ̂
)

=
1

2c

∫ c

−c

Vθ

(
θ̂
)

dθ ≥
c4

9Ic

−
c2

3
= M (c) (say), (13)

where c > 1/2. But the lower bound M (c) is not sharp, as is mentioned in the paper. From (12)
and (13) it seen that

M (c) > A0 (c) for c > 1/2.

here, note that A0 (c) is the lower bound for the Bayes risk for any estimator and M (c) is one for
any unbiased estimator. And also we have

M (c) = A0 (c)+
3

4c2 (n+1)
2
(n+2)

2 +O

(
1

c3

)
c→∞,

hence

lim
c→∞

M (c) = lim
c→∞

A0 (c) =
1

2 (n+1) (n+2)
.

For a family of uniform distribution on [θ− (τ/2) , θ +(τ/2)] with a scale τ as a nuisance para-
meter, we also have a similar information inequality to (4) as follows. For any estimator θ̂ of
θ

Rc

(
θ̂
)

=

∫ c

−c

Eθ




(

θ̂− θ

τ

)2


dθ

≥
1

2 (n+1) (n+2)
−

τ

2c (n+1) (n+2) (n+3)
, (14)

and

limc→∞Rc

(
θ̂
)
≥

1

2 (n+1) (n+2)
. (15)

In particular, letting τ = 1, we have the inequality (4) from (14). When c tends to infinity, from
(15) we have the same lower bound as (11).

4. Comments : In the previous section we obtain the lower bound for the Bayes risk of
estimators under the quadratic loss and the uniform prior distribution on an interval [−c, c], where
c > 1/2, and show that the bound is sharp. Recently Akahira and Takeuchi (2001) shows that for
small c > 0 the Bayes risk of any estimator in the interval of θ values of length 2c and centered
at θ0 can not be smaller than that of θ̂0 =

(
X(1) +X(n)

)
/2. More precisely they prove that for any

estimator θ̂ = θ̂ (X) based on the sample X of size n

lim
c→0 limn→∞

n2

2c

∫ θ0+c

θ0−c

Eθ

[(
θ̂− θ

)2
]
dθ ≥

1

2

and the lower bound is attained by θ̂0. This means that in a sense asymptotically the estimator θ̂0

can be regarded as uniformly best one.
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J. Hájeck Memorial Volume, Prague, 253-262




